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Prognostic assessment of patients is a key part of
medical care. Although neural networks can be used to
model survival, their accuracy has been limited for a
variety offactors, including (1) the lack ofdata balance
in certain intervals and (2) the lack of representation of
temporal dependencies in the network architecture.
Both problems can be solved with the use of sequential
neural networks, which establish predictions for a cer-
tain time point and then use these predictions to produce
survival estimates for other time points. If the sequence
of models is adequate, sequential neural networks pro-
duce more accurate estimates of survival than standard
neural networks, as shown in this example in the domain
ofAIDS. Assessments ofsurvival in one, two, three, five
and six years become more accurate (as measured by
the areas under the ROC curves) when initial predic-
tions of survival in four years are used in a sequential
neural network modeL

OUTCOME PREDICTION OVER TIME
Prognostic information can help (1) medical

researchers to identify certain patterns of disease pro-
gression and design experiments, (2) health mainte-
nance organizations and other members of the health
care industry to predict the needs of their served popula-
tions and to allocate resources accordingly, and (3)
patients to understand and make informed decisions
about their conditions.'

The increasing availability of electronic medical
data calls for statistical and machine-learning methods
that are able to extract important information from
patient records and develop accurate predictive models.
The most widespread application of statistical classifica-
tion for medical prognosis has been in predicting out-
comes and establishing severity indices for patients in
intensive care units (ICUs). The APACHE system2 uses
logistic regression to determine factors that are corre-
lated with good prognosis and to make outcome predic-
tions for patients in ICUs. Severity indices for prognosis
of trauma, such as TRISS and ASCOT, also use logistic
regression models.3 The majority of currently available
prognostic systems were developed for acute conditions.
Machine-learning methods have not been widely used to
make prognosis in medicine. A few neural network
applications are exceptions.324'6
Neural networks for prognosis

Neural networks are computational models that may

be used in the same tasks as regression models. They
have been used extensively for medical diagnosis in the
past decade,7 but their use for medical prognosis has
been more limited, as opposed to classic statistical
methods. From a set of existing data, a model is con-
structed and the parameters are estimated. The back-
propagation algorithm8 has been used extensively to
estimate parameters in a neural network. These parame-
ters are called weights. Recent studies have compared
neural networks to several statistical classification
methods9 and outlined the similarities in scope and pur-
pose of neural networks and logistic regression mod-
els.'0

Studies that use neural networks to establish progno-
sis for groups of patients usually provide outcome pre-
dictions for a single point in time. Utilizing aggregates
of single point estimates to predict individual survival
and to delineate patterns of disease progression may
yield spurious results, including nonmonotonic survival
curves, as indicated in Figure 1. These results occur
because predictions tend to be less accurate in intervals
where data are unbalanced (i.e., the ratio between deaths
and all cases is close to 0 or 1),1 and no provisions for
accounting for internal time dependencies are made in
isolated models.

R.:

:..

2 3 4 5 6
Year

~t)uu~B~)a~O S(3.OAS(4).Oi S5iO.6 f6)O3

br>4yr e2yssr2Yom8u3Yom M 5Yom >6Yom

* ..

Figure 1. Standard neural networks for prognosis.
Combination of isolated predictions from standard neural
networks may lead to spurious survival curves.
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Sequential Neural Networks
Sequential neural network systems are constructed

incrementally. In each step of the sequence, predictions
for one time point are produced by a neural network.
These predictions are passed forward to other networks
in the system. One or more networks may provide pre-
dictions that become inputs for other networks in the
sequence. The result is a chain or a hierarchy of neural
networks, as shown in a simplified form in Figure 2.
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Figure 2. Sequential neural networks for prognosis.
In sequential neural networks, dependencies among
time point predictions are explicitly represented, result-
ing in monotonic survival curves. In this example, predic-
tions for year 4 are entered in the model that predicts
survival in year 5.

A sequential system of neural networks has been
shown to provide predictions that are more accurate in
terms of calibration and resolution than the ones pro-
duced by standard neural networks in the domain of cor-
onary heart disease.'2 In this work, sequential neural
networks are used to model survival with AIDS.

PREDICTION OF SURVIVALWITH AIDS
Neural networks have rarely been used to model sur-

vival in the domain of HIV infection. The exceptions
relied solely on standard neural networks. The goal of
this study was to produce a model of disease progres-
sion in AIDS using sequential neural networks, and
compare the model's accuracy with that of a model con-
structed using only standard neural networks.
A subset of the ATHOS data'3 set was used for all

experiments. Not all AIDS patients from the ATHOS
data set were used because some lacked the date of
AIDS diagnosis. Table 1 shows the distribution of cases
according to the years of follow-up. Censored cases
were not used in the models, so the total number of

patients available for each year varies. The balance of
cases in each set is defined as

balance = min(Deaths/Total, SurvivalsITotal)
A balance of 0.5 means that the proportion of cases

is 1:1, and is the one that best facilitates classification by
statistical and neural network models.

Table 1. Distribution of cases according to year of
follow-up.

Year of
follow-up Dead Alive Total Balance

1 64 850 914 0.0752

2 150 606 756 0.1984

3 229 358 587 0.3901

4 257 199 456 0.4364

5 274 86 360 0.2388

6 277 28 305 0.0918

The major endpoint in this analysis was prediction
of mortality due to AIDS-related conditions, measured
from the date of AIDS diagnosis using the 1993 CDC
definition.'4 Variables were included in the model only
when the literature showed that they have been proven
to be infonnative. Not all published markers for disease
progression in HIV infection were available in the
ATHOS data set. Only baseline values, at the time of
AIDS diagnosis, were used.

Demographic and socioeconomic explanatory vari-
ables included age, gender, race, risk group, AIDS-
defining diagnoses, insurance coverage, length of stay in
hospital, and time elapsed from the estimated HIV sero-
conversion. Clinical findings included fatigue, weight
loss, diarrhea, mental status, and Karnofsky scores. Lab-
oratory test results included CD4 counts, CD4/CD8
ratio, hemoglobin, erythrocyte sedimentation rate,
erythrocyte and platelet counts, white blood cell counts,
serum p24 antigen, serum [B-2 microglobulin, total cho-
lesterol, HDL, and albumin levels. Antiretroviral and
prophylactic medications for opportunistic infections
and AIDS-related conditions reported after the patient
entered the study were also recorded. Continuous vari-
ables were represented as such, but they were normal-
ized before entry. Dummy coding was used for
categorical variables.

Standard and sequential neural networks were con-
structed to model survival in six time points (year one,
year two, and so forth). Each network had a single out-
put representing survival at a certain time point. The
standard neural networks had 38 inputs and 20 hidden
nodes. The sequential neural networks had 39 inputs
(one extra input representing predictions in another time
point). All networks were trained by backpropagation
with adaptive learning rate. Overfitting was monitored
in a holdout set of 40 percent of the cases. The software
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package NevProp2l5 was used. Cases were divided into
training and test sets using the bootstrap method.'6
Accuracy was measured in terms of resolution, or dis-
criminatory ability, of the neural network models. Reso-
lution was defined in terms of the area under the
receiver operating characteristic (ROC) curve.'7

RESULTS
A comparison of resolution obtained by standard

and sequential neural networks in predicting survival
with AIDS at one year from the diagnosis is shown in
Figure 3. By using the predictions of year four as inputs,
the sequential neural network could discriminate
patients who die and patients who survive more accu-
rately than the standard network. Similar improvements
occurred for other time points, as shown in Table 2.
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Figure 3. Change in resolution using standard and
sequential neural networks at one year. Resolution of
predictions of survival in one year resulting from the use
of sequential neural networks was significantly higher
than that of standard neural networks.

Table 2. Resolution of standard and sequential
neural network models.
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Figure 4. Resolution and balance of standard versus
sequential neural networks. Resolution of standard
and sequential neural networks are represented by
squares and circles, respectively, and scaled in the left
axis. Balance is represented by trangles and scaled in
the right axis.

An additional advantage of using sequential neural
networks is shown in Figures 5 and 6. When standard
neural network results are combined to produce an indi-
vidualized survival curve, nonmonotonic intervals may
result, as shown in Figure 5, because the dependencies
between predictions in adjacent time points are not
taken into account.
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Standard Sequential

Area st. Area st.
Year ROC error ROC error

1 0.7554 0.0329 0.7912 0.0304

2 0.7879 0.0213 0.7936 0.0221

3 0.7818 0.0197 0.8063 0.0198

4 0.8703 0.0174 0.8703 0.0174

5 0.8647 0.0207 0.8720 0.0198

6 0.8346 0.0317 0.9065 0.0289

As illustrated in Figure 4, resolution correlated posi-
tively with data balance in standard models: the more
balance between survivals and deaths in a given time
point, the higher the resolution. Although sequential
neural network resolution also depended on the balance
of data, resolution was higher than that of standard mod-
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Figure 5. Combination of standard neural network
results. Since the models do not relate to each other,
survival curves that are not monotonically decreasing,
although impossible in theory, can be produced, such as
for patient number 4.

If sequential neural networks are used, the number
of nonmonotonic intervals tends to decrease, because
certain time point dependencies are accounted for. Fig-
ure 6 shows an example of 10 survival curves produced
by sequential neural network models that have predic-
tions of year 4 as inputs.
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Figure 6. Sequential neural networks. Survival curves
produced by the sequential models tended to have fewer
nonmonotonic intervals.

DISCUSSION
Prediction of outcomes for an individual patient

depends on several variables. Unknown interactions, as
well as noise, may influence the results. Although neural
networks have been shown to be resilient to noise and
able to handle interactions,8 their predictive accuracy is
severely limited when the data are not well balanced
(i.e., the priors for some outcome classes are low). This
limitation is not exclusive to neural networks, and cur-
rent methods for decreasing its impact on classification
accuracy have been applied to other classification sys-
tems as well: equalization of priors (by sampling the
training set in a way that would make representation of
classes more balanced) or application of cost functions
(or utility functions) in parameter estimation.'9 The
problem with the first approach is that information about
prior probabilities is lost; the problem with the second
approach is that every time the functions change, new
models have to be created.20

The assessment of prognosis for patients over time
illustrates the need for dealing with the problem of
unbalanced data. At the extremes of time intervals that
represent duration of disease or life span of a human
being, there are time points in which the data represent
few people with or without a certain condition (e.g.,
dead, in the case of initial time points in a study of sur-
vival). In these cases, the classification of infrequent
exemplars is difficult. Sequential application of neural
networks to partial subtasks facilitates recognition of
these infrequent cases and promotes an increase in total
classification accuracy. Sequential application of neural
networks to the prognosis of patients who have AIDS
provides results that not only are more accurate in terms
of discrimination (especially for infrequent cases) but
are also more realistic because they incorporate the
commonsense knowledge that predictions of survival
are necessarily correlated over time. Sequential methods

make more use of the available information and can sig-
nificandly enhance the predictive ability of current prog-
nostic models, delineating patterns of disease
progression that could not be envisioned by current
methods. This increase in predictive ability has the
potential to (1) empower patients, since they will have
more precise estimates as to how their disease will
progress; (2) empower healthcare givers, who will be
able to make more informed decisions on the course of
therapeutics; and (3) empower health care organiza-
tions, which will be able to anticipate the needs of their
covered population and anticipate costs.

Sequential neural networks are easy to build, but
certain sequential models may require longer training
times than their conventional counterparts. Only two-
step sequential systems are described in this study. The
use of more steps implies using more computer
resources, but has the potential to improve further the
resolution of certain models. For example, a three-step
model that first predicts the extremes of an interval and
then applies those predictions to the model that predicts
the middle of the interval may improve resolution.

CONCLUSION
Survival analysis can be viewed as a problem in

which rare categories of events need to be discrimi-
nated. Standard neural networks can be accurate predic-
tors when the frequency of events is not low. Sequential
neural networks provide a way to achieve high accuracy
even for low-frequency events.

A sequential system of neural networks presented
here offers a solution to the problem of recognizing
infrequent patterns in survival data. The sequential sys-
tem makes use of accurate predictions for a certain time
point to develop a model that makes predictions for
other time points in which the accuracy is not as high.
The use of this type of information not only allows an
increase in resolution for certain time points, but also
increases the model's overall consistency, by producing
survival curves that have fewer nonmonotonic intervals.
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